Microtubules modulate the stiffness of cardiomyocytes against shear stress.
نویسندگان
چکیده
Although microtubules are involved in various pathological conditions of the heart including hypertrophy and congestive heart failure, the mechanical role of microtubules in cardiomyocytes under such conditions is not well understood. In the present study, we measured multiple aspects of the mechanical properties of single cardiomyocytes, including tensile stiffness, transverse (indentation) stiffness, and shear stiffness in both transverse and longitudinal planes using carbon fiber-based systems and compared these parameters under control, microtubule depolymerized (colchicine treated), and microtubule hyperpolymerized (paclitaxel treated) conditions. From all of these measurements, we found that only the stiffness against shear in the longitudinal plane was modulated by the microtubule cytoskeleton. A simulation model of the myocyte in which microtubules serve as compression-resistant elements successfully reproduced the experimental results. In the complex strain field that living myocytes experience in the body, observed changes in shear stiffness may have a significant influence on the diastolic property of the diseased heart.
منابع مشابه
Comparison of plasticity and stiffness of steel shear walls with composite steel plate shear wall
The steel shear wall and composite steel plate shear wall is introduced in recent three decade and is considered and is spread rapidly. Composite steel plate shear wall which is made of a layer of thin steel sheet with coating of reinforced concrete in one or both sides of steel palate is considered a third generation of resistance shear walls against lateral loads that in addition to increasin...
متن کاملProtective effect of pomegranate seed oil against H2O2 -induced oxidative stress in cardiomyocytes
Objective: It has been well documented that oxidative stress is involved in the pathogenesis of cardiac diseases. Previous studies have shown that pomegranate seed oil (PSO) has antioxidant properties. This study was designed to investigate probable protective effects of PSO against hydrogen peroxide (H2O2)-induced damage in H9c2 cardiomyocytes.Materials and Methods: The cells were pretreated 2...
متن کاملPortulaca oleracea protects H9c2 cardiomyocytes against doxorubicin-induced toxicity via regulation of oxidative stress and apoptosis
Abstract Background and Objectives: Doxorubicin as an effective chemotherapeutic agent is frequently used in various cancers. Nowadays, the application of doxorubicin is limited due to its cardiotoxic effects. The important mechanism which is involved in the cardiac injury of doxorubicin is the generation of reactive oxygen species; therefore antioxidant compounds may reduce cardiotoxicity. ...
متن کاملImpact of Integration on Straining Modes and Shear-Locking for Plane Stress Finite Elements
Stiffness matrix of the four-node quadrilateral plane stress element is decomposed into normal and shear components. A computer program is developed to obtain the straining modes using adequate and reduced integration. Then a solution for the problem of mixing straining modes is found. Accuracy of the computer program is validated by a closed-form stiffness matrix, derived for the plane rectang...
متن کاملProtective effect of bioactive compounds from Lonicera japonica Thunb. against H2O2-induced cytotoxicity using neonatal rat cardiomyocytes
Objective(s):Pharmacological studies showed that the extracts of Jin Yin Hua and its active constituents have lipid lowering, antipyretic, hepatoprotective, cytoprotective, antimicrobial, antibiotic, antioxidative, antiviral, and anti-inflammatory effects. The purpose of the present study was to investigate the protective effects of caffeoylquinic acids (CQAs) from Jin Yin Hua against hydrogen ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 98 1 شماره
صفحات -
تاریخ انتشار 2006